School  Natural Sciences
Academic Unit
 Geology Department
Level of Studies
 Undergraduate
Course Code
 GEO_703
Εξάμηνο σπουδών  5ο
Course Title
 Engineering Seismology
Independent Teaching Activities
 Lectures and laboratory work
Weekly Teaching Hours
 2 (lectures),  2 (laboratory)
Credits  3
Course Type
 Science field, Skills Development
Prerequisite Courses
Basic knowledge of Seismology
Language of Instruction & Examinations
 Greek
Is the Course offered to Erasmus Students
Υes, in English
Course Web-Page (URL)  https://eclass.upatras.gr/courses/GEO342/
Learning Outcomes

During this course the student acquires basic knowledge in Engineering Seismology and especially in subjects like seismic hazard, seismic risk and soil response, after successful completion the student will:

  • Know the basic principles of Engineering Seismology
  • Solve, simple problems related to Engineering Seismology

Knowledge

The course aims to provide knowledge related to the methods and principles used by Engineering Seismology in seismic risk mitigation. Through the class the students will become familiar with modern methodologies in  Engineering Seismology and how these can be applied to antiseismic construction.

Abilities

  • Ability to demonstrate knowledge and understanding of essential facts, concepts, principles and theories relating to earthquake hazard, wave propagation in soil layers, earthquake statistics
  • Ability to apply such knowledge and understanding to the solution of qualitative and quantitative problems
  • Ability to solve simple engineering seismology problems, using related seismological software
  • Ability to work in a team
General Competences

By the end of this course the student will, furthermore, have developed the following skills (general abilities):

  1. Ability to apply acquired knowledge and understanding, to the solution of problems
  2. Ability to interact with others in problem solving as a team
Syllabus
  1. Introduction, Engineering Seismology history, advances due to major quakes.
  2. Seismic Intensity, Intensity scales.
  3. Accelerometers, processing of accelerometer records.
  4. Statistical analysis of seismicity, application to seismic hazard
  5. Earthquake Hazard - Risk assessment, Probabilistic and Deterministic methodologies
  6. Acceleration spectrum, response spectrum, Fourier spectrum of strong motion records
  7. Ground motion prediction equations, Synthesis of strong ground motions
  8. Design spectra and Building codes
  9. Microzonation studies, geophysical techniques, ground response analysis
  10. Microtremor analysis, methods, relation to ground response.
  11. Seismic landslides

Laboratory exercises in Engineering Seismology subjects: earthquake statistics, processing of strong ground motion records, seismic hazard, microzonation methods etc

Delivery  Lectures and computer laboratory training using specific seismological software
Use of Information & Communication Technology
 Use of Information and Communication Technologies (ICTs) in teaching. The lectures content of the course, for each chapter, are uploaded in the eclass platform. Students are trained in seismological software use in the Department’s computer lab. Interaction with students is done through eclass platform also.
Teaching Methods
 
Activity Semester workload
 Lectures  2×13=26
 Laboratory work  2×13=26
 Hours for private study of the student  23
 Total number of hours for the Course  75
 Student Performance Evaluation

The assessment is done in the following way:

Written examination after the end of the semester which includes

  • Theory based questions
  • Assessment questions
  • Problem solving questions
Minimum passing grade:  5
Attached Bibliography
  1. Lecture notes (eclass)
  2. Tselentis Akis, Modern Seismology, Pub. Papasotiriou, 1997.
  3. Papazachos B, Karakaisis G., Chatzidimitriou P., Introduction to Seismology, Pub. Ziti, 2005
  4. Kramer, S.L. Geotechnical Earthquake Engineering, Prentice Hall, 1996.
School  Natural Sciences
Academic Unit
 Geology Department
Level of Studies
 Undergraduate
Course Code
 GEO_610E
Εξάμηνο σπουδών  5ο
Course Title
 GIS and Remote Sensing in Applied Geology
Independent Teaching Activities
 Lectures, laboratory, Tutorial
Weekly Teaching Hours
 2 (lect.) / 1 (lab.)/ 1T
Credits  3
Course Type
 Field of Science (GIS & Remote Sensing)
Prerequisite Courses
 No
Language of Instruction & Examinations
 Greek
Is the Course offered to Erasmus Students
 Yes (in English)
Course Web-Page (URL)  https://eclass.upatras.gr/courses/GEO307/
Learning Outcomes

The course aims at familiarizing students with geo spatial data and at introducing them in  Geographic Information Systems and Remote Sensing technologies. By the end of this course the students will be able to:

  1. Distinguish the concepts of analogue and digital image and calculate the digital image statistical parameters.
  2. Distinguish the geographical data as vectors and rasters and information as spatial and non- spatial.
  3. Understand the interactions of electromagnetic radiation with materials and atmosphere.
  4. Study maps of Greece and to recognize the projection systems.
  5. Recognize the most common satellite images and to digitally process them.
  6. Use geographic and geological data in GIS environment, to process it and produce maps.

By the end of this course the student will, furthermore, have developed the following skills:

  1. Ability to demonstrate knowledge and understanding of basic concepts, about GIS and RS.
  2. Importing, storing, processing, managing satellite data with the use of specialized software.
  3. Enhancing the quality of images, creating colored composites and interpreting them.
  4. Implementing geometric correction, georeferencing and digitization of satellite images.
  5. Importing, storing, processing, managing geographic and geological data in GIS environment.
  6. Creation of DEM out of digitized contour lines and production of topographic and elevation profiles.
  7. Creating maps with the combined use of Geographic Information Systems and Remote Sensing data.
General Competences
  • Searching, analysis and synthesis of facts and information, as well as using the necessary technologies
  • Decision making
  • Autonomous (Independent) work
  • Work in an international enviroment
  • Work in an interdisciplinary enviroment
  • Work design and management
  • Respect to natural environment 
Syllabus

The course is organized in 4 teaching circles which are described below. 

 Circle Α:

  • Analogue and digital image, histogram and image statistical parameters
  • Theory of GIS, History, Structure.
  • Raster and vector data, structure of GIS system, spatial and non spatial data, topolology.
  • Sensors and platforms, electromagnetic spectrum.
  • Interactions of electromagnetic radiation with materials and atmosphere.

Circle Β:

  • Image classification. Supervised/ unsupervised multispectral classification.
  • Spatial, radiometric, spectral, temporal resolution of Remote Sensing data.
  • Digital image restoration, basic principles of image interpretation,, coloured composites, radiometric corrections, atmospheric correction of Remote Sensing data.                

Circle C:                               

  • Map Projection. Introductory concepts (geoid, spheroid, ellipsoid, geographic coordinates, datum, grid systems, types of projection, parameters).
  • Hellenic Geodetic Reference Systems. Distortions, Mathematic models for geometric correction and resampling. Geometric correction of maps and satellite

Circle D:

  • Mapping with the combined use of Geographic Information Systems and Remote Sensing data.
  • Contour lines digitization, Digital Elevation Model generation, Topographic relief impact theory, orthophotos.
  • Image enhancement, digital histogram enhancement, image segmentation, , image enhancement filters.
  • Creation of topographic and elevation profiles.
  • Case studies of the use of  Geographic Information Systems and Remote Sensing in Applied Geology.
Delivery  Lectures with the use of PowerPoint slideshow.
Use of Information & Communication Technology
 Laboratories with the use of specialized software for GIS (ESRI, ARCGIS) and Image Processing (ERDAS IMAGINE) in the departmental computer lab.  Training in the use of GPS in the field.
Teaching Methods
 
Activity Semester workload
 Lectures in Theory  2X13 = 26
 Laboratory exercises in GIS and RS  1X13 = 13
 Writing reports of the laboratory exercises  1X13 = 13
Hours for private study and bibliography analysis of the student 23
 Total number of hours for the Course  75
 Student Performance Evaluation

Written examination after the end of the semester (Gth70%)

Written reports for each laboratory exercise (Glab30%)

Minimum passing grade:  5.

Final Course Grade (FCG)

FCG = ( Gth + Glab ) / 2
Attached Bibliography
  1. "Remote Sensing (Principles, Image processing,Applications)" G. Skianis K. Nikolakopoulos, D. Vaiopoulos, ION Publ. 2012. p.336. (in Greek language)
  2. " Remote Sensing –Photointerpretation in Geo-scienses", Theodoros Astaras, Aivazi Publ. 2011, p. 484. (in Greek language)
  3. Laboratory Notes: "Laboratory exercise of digital processing of Remote Sensing data combined with GIS", D. Vaiopoulos G. Skianis K. Nikolakopoulos, Athens University Publ. 2006, p. 178. (in Greek language).
School  Natural Sciences
Academic Unit
 Geology Department
Level of Studies
 Undergraduate
Course Code
 GEO_503E
Εξάμηνο σπουδών  5ο
Course Title
 Industrial Minerals
Independent Teaching Activities
 Lectures, tutorials and laboratory work, fieldwork
Weekly Teaching Hours
 2 (lect.) 1 (lab.) 
Credits  3
Course Type
 Field of Science (Mineralogy-Petrology) and Skills Development (determination of physical and chemical properties through the use of analytical instruments)
Prerequisite Courses

Typically, there are not prerequisite course.

Essentially, the students should possess:

(a) knowledge provided through the previously taught theoretical courses:  ‘'Physics”, “Chemistry”, “Earth Materials I”, “Earth Materials II”, “Petrography I” and “Petrography”.

(b) laboratory skills obtained through the previously attended laboratories included in the courses outlined above.
Language of Instruction & Examinations
Greek. Teaching may be however performed in English in case foreign students attend the course.
Is the Course offered to Erasmus Students
 Yes
Course Web-Page (URL)  https://eclass.upatras.gr/courses/GEO312/
Learning Outcomes

By the end of this course the student will be able to:             

  1. understand the fundamentals of the application of mineralogy to technology via the use of the non-metallic minerals and rocks for the development of mineral based materials, new products and new uses according to their physical and chemical properties.
  2. will be familiarized with the analytical methods of research to identify and evaluate the industrial minerals,  by applying  all of their geological knowledge they have acquired during their studies.
  3. understand the possibilities offered by the exploitation of the industrial mineral resource in national economic development, as well as their importance in the global economy.

By the end of this course the student will, furthermore, have developed the following skills (general abilities):

  1. Ability to exhibit knowledge and understanding of the essential facts, concepts, theories and applications which are related to Industrial Minerals.
  2. Ability to apply this knowledge and understanding to the solution of problems related to Industrial Minerals and their uses.
  3. Αbility to adopt and apply methodology to the solution of non familiar problems of Industrial Minerals
  4. Study skills needed for continuing professional development.
  5. Ability to interact with others in issues concerning indedification, exploitation and use of industrial mineral resources.
General Competences
  • Searching, analysis and synthesis of facts and information, as well as using the necessary technologies
  • Autonomous (Independent) work
  • Group work
Syllabus

Lectures

  • Analysis of common and special industrial minerals and rocks and their uses (mineralogy, mineral chemistry, formation environment, classification schemes, properties and industrial uses)
  • Description of production of industrial minerals for their use in industry: consturction materials, insulating materials, glass industry, ceramic manufacture, molding sands, fillers, aggregates, filters, fertilizers, cement, concrete, mortars.
  • Outcrops of Industrial minerals in Greece.
  • Case studies of Melos and Yalli islands
  • Contribution of Industrial Minerals and Rocks in the national economy and the opportunities of financial development they offer.
  • Contribution of Industrial Minerals and Rocks in the global economy.

Laboratory work

  • Industrial minerals in our everyday life.
  • Industrial minerals in the construction industry.
  • Identification and recognition of geological outcrops suitable for industrial uses
  • Constraints of open front exploitation of industrial minerals and rocks. Feasibility parameters.
  • Semester laboratory report
Delivery
  • Lectures, seminars and laboratory work face to face.
  • Lectures: using slides for overhead projector and/or power-point presentations.
  • Open eClass - Asynchronous eLearning Platform: storage and presentation of teaching material.
  • Laboratories: Students are assigned a couple of commercially available industrial materials (eg. Pharmaceuticals, foods, cosmetics, detergent s, modeling clays, cat litters, personal hygiene products, etc.) to be analysed using a variety of analytical techniques in order to identify uses of various industrial minerals. Alternatively, a common raw material can be chosen from which they are asked to produce specific products. A final essay will include their result as well as other possible industrial uses and application of their research materials.
Use of Information & Communication Technology
  • Use of Information and Communication Technologies (ICTs) (e.g. powerpoint) in teaching. The lectures content of the course for each chapter are uploaded on the internet, in the form of a series of ppt files, where from the students can freely download them using a password which is provided to them at the beginning of the course.
  • Use of specialized software packages (DIFFRACplus EVA software Bruker-AXS, USA, based on the ICDD Powder Diffraction File 2006 version) for the qualitative and quantitative characterization of industrial minerals
Teaching Methods
 
Activity Semester workload
 Lectures (2 conduct hours per week x 13 weeks)  2x13=26
Laboratory work (1 conduct hour per week x 13 weeks) – identification of potential industrial mineral resources using geological maps, identification of mineral uses in various commercial products, characterization of industrial minerals by means of analytical techniques)   

1x13=13

Fieldwork  1x8=8
Hours for private study of the student and preparation of home-works and reports, for the Laboratory, and preparation for the Laboratory  (study of techniques and theory) 28
 Total number of hours for the Course  75
 Student Performance Evaluation
  1. Written examination (70% of the final mark)
  2. An essay comprising the outcome of the exercise assignments on the commercial products analysed and a report on various additional uses of the industrial uses recongised therin (30% of the final mark).

Percentages are valid t only when the student secures the minimum mark of 5 in the final written examination

Greek grading scale: 1 to 10. Minimum passing grade: 5.

Grades <3 correspond to ECTS grade F.

Grade 4 corresponds to ECTS grade FX.

For the passing grades the following correspondence normally holds:

5 <-» E, 6 <-> D, 7 <-> C, 8 <-> Β and >9 <-> A
Attached Bibliography

Suggested bibliography:

  1. “Applied Petrology – Industrial Minerals”, A. Katerinopoulos & M. Stamatakis, 2005, Univ. Athens [A textbook in Greek language)
  2. “Mineral Wealth of Greece”, A. Tsirambidis, 2005, Giahoudis Publications, Thessaloniki.
  3. “Industrial Minerals and their uses”, P.A. Ciullo, 1996, Elsevier
  4. “Introduction to industrial minerals”, D.A.C. Manning, 1995, Chapman & Hall, 1995

- Related academic journals:

  1. Minerals
  2. Industrial minerals
School  Natural Sciences
Academic Unit
 Geology Department
Level of Studies
 Undergraduate
Course Code
 GEO_603E
Εξάμηνο σπουδών  5ο
Course Title
 Sedimentary Basins Analysis
Independent Teaching Activities
 Lectures,  laboratory work, two days field work
Weekly Teaching Hours
 2 (lect.) 1 (lab), 2 days field
Credits  3
Course Type
 Scientific area and the development of skills in understanding the evolution of a sedimentary basin in space and time
Prerequisite Courses
 Sedimentology, Stratigraphy, Structural Geology
Language of Instruction & Examinations
Greek. Teaching may be however performed in English in case foreign students attend the course.
Is the Course offered to Erasmus Students
 If necessary Yes
Course Web-Page (URL)  https://eclass.upatras.gr/courses/GEO335/
Learning Outcomes

This course requires knowledge of courses of sedimentology, tectonic and Stratigraphy-Palaeontology. The combination of knowledge of the above, who were taught in previous courses, will help him on the particularities of this course.  

At the end of this course the student will be able to understand the way of the evolution of a sedimentary basin, in space and time. Student could monitor the progress of sedimentation environments, coupled with the knowledge of the tectonic regime and the age of the sediments.

In particular, the collection of information related to the sedimentation environments, their evolution, the particularities of sub-environments within a basin, combined with the time that these changes are taking place, but also of the tectonic regime, which affects the above changes, would give the ability to synthesize the geological model of the evolution of a sedimentation basin.
General Competences

By the end of this course the student will, furthermore, have developed the following skills (general abilities):

  • Search, analysis and synthesis of data and information, using and necessary technologies
  • Teamwork
  • Production technologies of new research ideas

Design and project management at the end of this course the student will have further developed the following skills:

  1. Ability to process sedimentological information.
  2. Ability to process structural information.
  3. Ability to process paleontological-stratigraphic information.
Ability to synthesize and propose the geological evolutionary model for a sedimentary basin
Syllabus
  1. Six basins are studied with different sedimentary environments, different tectonic regimes and time of evolution.
  2. Mesohellenic Piggy-back basin in Central Greece.
  3. Pindos Foreland in western Greece.
  4. Patras-Corinth extensional basin.
  5. The Complex (foreland and piggy-back) Zakynthos basin - Ionian Foreland Basin.
  6. Kalamata extensional Basin.
  7. Extensional basins in NW Crete Island (Platanos-Kasteli-Maleme sub-basins) - Mediterranean Ridge.
 B. Methods of constructing three-dimensional visualizations of a basin using underground and outcropped information (e.g. Geological sections, lithostratigraphic columns from wells).
Delivery
  1. Teaching using power point presentations, workshops with exemplary construction solving three-dimensional visualizations and models of evolution.
  2. 2. Field-trip exercises in areas of Zakynthos island, around Patras, Egion -  Corinth, Messologgi (in three of the above described basins) while valued and information from field-trip exercises within other courses in previous years ( Kalamata basin, Corinth basin).
Use of Information & Communication Technology
 Students are informed of all new developments in the application of methodologies for sedimentary basin analysis, in the interpretation and evaluation of seismic data, and have the ability to search through electronic sources into equivalent basins around the world aimed to compare the evolutionary models of sedimentation with what they are taught. Through the platform of e-class where it is posted all the presentations of courses is done and communicating with students to resolve on a daily basis problem.
Teaching Methods
 
Activity Semester workload
Lectures - seminars  2 Χ 13 = 26 
Reference study and analysis 1 Χ 13 = 13  
Field trip  2 days X 8 = 16 
Writing work 1 Χ 13 = 13
Workshop-Laboratory Exercise 1 Χ 13 = 13
 Total number of hours for the Course  81
 Student Performance Evaluation
  1. The students are divided into groups of 2-3 people and undertake the drafting work on one of these basins. They present their work to their colleagues with power point, is examining with questions and answers from both the instructor and between groups.
  2. Written examination on general knowledge, tasks that were given for the six basins, and the content of all written and presented tasks for the six basins. Right to participate in the written exam are those who have authored and presented the work assigned.
  3. Minimum pass grade: 5.
    The language of assessment is in Greek
Attached Bibliography

Mesohellenic Piggy-back basin in Central Greece:

  1. Zelilidis, A., Piper, D.J.W. & Kontopoulos, N. 2002: Sedimentation and basin evolution of the Oligocene - Miocene Mesohellenic basin, Greece. – American Association of Petroleum Geologists Bulletin, 86 (1), 161-182.
  2. Zelilidis, A. & Kontopoulos, N. 1996: Significance of fan deltas without toe-sets within rift and piggy-back basins: examples from the Corinth graben and the Mesohellenic trough, Central Greece. - Sedimentology, 43, 253-262.
  3. Doutsos, T., Koukouvelas, I., Zelilidis, A. & Kontopoulos, N. 1994: Intracontinental wedging and post-orogenic collapse in Mesohellenic Trough. - Geol.Rundsch., 83, 257-275.

Pindos Foreland in western Greece:

  1. Maravelis, A., Makrodimitras, G. & Zelilidis, A. 2014: Stratigraphic evolution and source rock potential of a Late Oligocene-Early/Middle Miocene continental slope system, Diapondia Islands, Ionian Sea, NW Greece. Geological Magazine, 151(3):394-413.
  2. Konstantopoulos, P. & Zelilidis, A., 2013: Sedimentation of submarine fan deposits in the Pindos foreland basin, from late Eocene to early Oligocene, west Peloponnesus peninsula, SW Greece. Geological journal, 48(4), 335-362.
  3. Konstantopoulos, P. & Zelilidis, A., 2013: Provenance analysis of Eocene-Oligocene turbidite deposits in Pindos foreland basin, fold and thrust belt of SW Greece: Constraints from framework petrography and bulk-rock geochemistry. Arabian Journal of Geosciences, 6(12), 4671-4700.
  4. Konstantopoulos, P., Maravelis, A. & Zelilidis, A., 2013: The implication of transfer faults in foreland basin evolution: Application on Pindos Foreland Basin, West Peloponnesus, Greece. Terra Nova
  5. Konstantopoulos, P. & Zelilidis, A. 2012: The geodynamic setting of Pindos foreland basin in SW Greece: Tectonic and sedimentary evolution. Episodes, v.35, no4, 501-512
  6. Avramidis, P., Zelilidis, A. & Kontopoulos, N. 2000: Thrust dissection control of deep-water clastic dispersal patterns in the Klematia-Paramythia foreland basin, Western Greece. -Geol.Mag., 137, 667-685.
  7. Zelilidis, A. 2003: The geometry of fan-deltas and related turbidites in narrow linear basins. Geological Journal, 38, 31-46.
  8. Kokinou, Ε., Kamberis, Ε., Vafidis, Α., Monopolis, D., Ananiadis, G. & Zelilidis, Α. 2005: Deep seismic reflection data from offshore western Greece: a new crustal model for the Ionian Sea. – Journal of Petroleum Geology, 28, 81-98.
  9. Avramidis, P., Zelilidis, A. 2001: The nature of deep-marine sedimentation and palaeocurrent trends as an evidence of Pindos foreland basin fill conditions. Episodes, 24, No4, 252-256.
  10. Avramidis, P., Zelilidis, A., Vakalas, I. & Kontopoulos, N. 2002: “Interaction between tectonic activity and eustatic sea-level changes in the Pindos and Mesohellenic Basins, NW Greece: basin evolution and hydrocarbon potential. -Journal of Petroleum Geology, 25 (1), 53-82.

Patras-Corinth extensional basin:

  1. Vakalas, I., Zelilidis, A., Barkooky, A., Darwish, M. & Tewfik, N. 2015: Comparison between fan deltas in the Gulf of Suez, Egypt, and in the Gulf of Corinth, Greece. Arabian Journal of Geosciences, 8:3603-3613.
  2. Zelilidis, A. 2003: The geometry of fan-deltas and related turbidites in narrow linear basins. Geological Journal, 38, 31-46.
  3. Kontopoulos, N. & Zelilidis, A. 1997: Depositional environments of the coarse-grained lower Pleistocene deposits in the Rio-Antirio basin, Greece. - In: Engineering Geology and the Environment (Eds. by Marinos,P.G., Koukis,G.C., Tsiambaos,G.C. and G.C.Stournaras). Proceedings of Intern. Symp.Engin.Geol.Envir., 199-204.
  4. Zelilidis, A. & Kontopoulos, N. 1996: Significance of fan deltas without toe-sets within rift and piggy-back basins: examples from the Corinth graben and the Mesohellenic trough, Central Greece. - Sedimentology, 43, 253-262.
  5. Poulimenos, G., Zelilidis, A., Kontopoulos, N. & Doutsos, T. 1993: Geometry of trapezoidal fan deltas and their relationship to extensional faulting along the south-western active margins of the Corinth rift. -Basin Research, 5, 179-192.
  6. Kontopoulos,N. & Zelilidis,A.1992: Upper Pliocene lacustrine environments in the intramontane Rio graben basin, NW Peloponnesus, Greece.  Jb. Palaont. Mh., 2, 102 114. 
  7. Zelilidis,A., Koukouvelas,I. & Doutsos,T.1988: Neogene paleostress changes behind the forearc fold belt in the Patraikos Gulf areas Western Greece.  Jb. Geol. Palaont. Mh., 5: 311 325

The Complex (foreland and piggy-back) Zakynthos basin - Ionian Foreland Basin:

  1. Zelilidis, A., Papatheodorou, G., Maravelis, A., Christodoulou, D., Tserolas, P., Fakiris, E., Dimas, X., Georgiou, N. & Ferentinos, G., 2016: Interplay of thrust, back-thrust, strike-slip and salt tectonics in a Fold and Thrust Belt system: an example from Zakynthos Island, Greece. Intr.J.Earth Sciences. 105: 2111-2132.
  2. Zelilidis, A., Kontopoulos, N., Piper, D.J.W. & Avramidis, P. 1998: Tectonic and sedimentological evolution of the Pliocene-Quaternary basins of Zakynthos island, Greece: Case study of the transition from compressional to extensional tectonics. - Basin Research, 10, 393-408.
  3. Κontopoulos, N., Zelilidis, A., Piper, D.J.W. & Mudie, P.J. 1997: Messinian evaporites in Zakynthos, Greece. -Palaeog., palaeocl., palaeoec, 129, 361-367.

Kalamata Extensional Basin:

  1. Zelilidis, A. & Kontopoulos, N. 1999: Plio-Pleistocene architecture in marginal extensional narrow sub-basins: examples from Southwest Geeece. - Geol.Mag., 136(3), 241-262.
  2. Zelilidis, A. & Kontopoulos, N. 1994: Pliocene-Pleistocene fluvial/wave dominated deltaic sedimentation: the Pamisos delta in SW Peloponnesus, GREECE. -Geol.Mag.,131,653-668.
  3. Zelilidis, A. & Kontopoulos, N. 2001: Post-Miocene sedimentary evolution of south Peloponnesus, Greece. –GAIA, No 16 (1-2), 1-12.

Extensional basins in NW Crete Island (Platanos-Kasteli-Maleme sub-basins) - Mediterranean Ridge:

  1. Maravelis, A., Panagopoulos, G., Piliotis, I., Pasadakis, N., Manutsoglou, E. & Zelilidis, A., 2016: Pre-Messinian (sub-Salt) Source-rock potential on Back-stop Basins of the Hellenic Trench system (Messara Basin, Central Crete, Greece). Oil and Gas Science and Technology-Rev.IFP Energies nouvelles 71, 6. (DOI: 10.2516/ogst/2013130).
  2. Kontopoulos, N. & Zelilidis, A. 1997: Depositional processes in outer arc marginal sub-basins during the Messinian. Examples from the western Crete Island, Greece. -Geologica Balcanica, 27, 1-2, 91-100.
  3. Kontopoulos, N., Zelilidis,A. & Frydas,D. 1996: Late Neogene sedimentary and tectonostratigraphic evolution of southwestern Crete island, Greece. - N. Jb. Geol.Palaont. Abh., 202, 287-311.
School  Natural Sciences
Academic Unit
 Geology Department
Level of Studies
 Undergraduate
Course Code
 GEO_603
Εξάμηνο σπουδών  5ο
Course Title
 Applied Hydrogeology
Independent Teaching Activities
 Lectures, Laboratory work
Weekly Teaching Hours
 2 (lect.) 2 (lab.)
Credits  5
Course Type
 Field of Science (Hydrogeology)
Prerequisite Courses
Basic knowledge of geology, chemistry, physics and mathematics
Language of Instruction & Examinations
Greek. Teaching may be however performed in French and English in case foreign students attend the course.
Is the Course offered to Erasmus Students
 Yes
Course Web-Page (URL)  The name of the Hydrogeology laboratory Website is http://www.hydrolab.gr
Learning Outcomes

APPLIED HYDROGEOLOGY

The course entitled "Applied Hydrogeology" is designed as an application of the geological knowledge to the exploitation of groundwater in order to meet the water needs, for example of a city or an agricultural or a tourist activity etc. This is a course of specialization which, in conjunction with the other relevant courses that are taught in the Department of Geology, aims to provide students with the necessary knowledge of:

  1. The understanding of the hydrological cycle and water budget.
  2. The utility and use of devices that measure the parameters associated with the surface and groundwater.
  3. The water hosted in geological formations and the presence of aquifers.
  4. The understanding of the movement of groundwater.
  5. Addressing hydrogeological and environmental problems, by compiling data, with the ultimate view of professional self-reliance and successful job positioning in the professional arena.
General Competences
 Analysis and synthesis of data and information using the necessary technologies. Project design and management.
Syllabus
  • Subject of Hydrogeology, Origin of water. Hydrogeology in relation to natural sciences. The hydrological budget of the planet. Estimation of water needs for drinking water supply, irrigation and the water supply to industrial and tourist facilities.
  • Introduction to the hydrological cycle and hydrological budget. Statistical processing of precipitation and construction of rainfall maps. Potential and actual evapotranspiration and methods for their calculation. Measurement of runoff, statistical processing of runoff measurements, unit hydrograph and its use.
  • Groundwater movement in porous media, Darcy's law and its validity criteria, porosity and permeability, transmissivity and storativity, empirical ways of estimating water permeability with tracer tests and grain size analysis, flow networks and their applications.
  • Groundwater Hydraulics. Groundwater mitigation works. Vertical, horizontal and mixed mitigation works. Borehole construction: various techniques, advantages and disadvantages of each one. Boreholes construction stages and the role of the geologist. Selection of technical hydrogeological characteristics of a borehole according to the intended abstraction volume. Borehole protection, cost estimation, pumping assemblies.
Delivery  Lectures, seminars and laboratory work face to face.
Use of Information & Communication Technology
 With the use of power point, and instrument samples demonstration
Teaching Methods
 
Activity Semester workload
The teaching process includes 26 hours of lectures, and 26 hours of lab courses. Lectures are powered by PowerPoint slides, while educational videos are also projected. Other materials are also used in the classroom, e.g. water level meters, or borehole casing samples. During the lab courses, students are divided into groups of two to three people, working independently, and under the supervision of the teachers, to complete the exercises they are given each time. The course also includes a field trip, during which students have the opportunity to see hydrogeological structures in the field and discuss about specific hydrogeological subjects.  
Lectures  2X13 = 26
Lab courses- exercises  2X13 = 26
Writing of laboratory exercises 2X13 = 26
Daily Study 15
Preparation of examinations 32
 Total number of hours for the Course  125
 Student Performance Evaluation
The examination of the course is in writing. Students are given eight to ten questions of different difficulty level, including questions that require judgment, and exercises with a specific score for each of them. The lab exercises are corrected and graded. Intermediate scheduled tests are often carried out in order to consolidate the content of the course and to bring students closer to its most important subjects. The intermediate tests are positively taken into consideration in the overall assessment of the students
Attached Bibliography
  1. N. Lambrakis, Κ. Νικολακόπουλος, Κ. Κατσάνου, 2016. Hydrology with the use of GIS tools and Remote sensing data. Kallipos, pp, 227, ISBN 978-960-603-106-9
  2. Lambrakis, Applied and Environmental Hydrogeology, Patra’s University Editions, 130pp
  3. Lambrakis, Lessons in Applied and Environmental Hydrology, To appeared, 450pp
  4. Kallergis, 1999. Applied – Environmental Hydrogeology. Technical chamber Editions, Volumes A,B,C.
  5. Soulios, 1996. General Hydrogeology. University Studio Press. First, Second and third Volume

Related academic journals:

  1. Hydrogeology Journal, Springer
  2. Journal of Hydrology, Elsevier